Raman Confocal Microscopy
with the Highest Spatial Resolution

Sergej Shashkov

SOL instruments Ltd, 58-10, Nezavisimosti ave, P.O. Box 235,
Minsk 220005, Republic of Belarus

sales@solinstruments.com

www.solinstruments.com
High spatial resolution chemical imaging / analysis is a target for many researchers in nanotechnology and biology.

Confocal microscope equipped with spectrograph is a good choice for non-destructive chemical analysis with Raman spectroscopy.
Layout of the Raman instrument – Confotec NR500 (SOL instruments)

Raman confocal microscope "Confotec NR500" (SOL instruments Ltd.) was developed as a highest spatial resolution device

www.solinstruments.com
Ultra-low frequency Raman measurements of CdI2 (Cadmium Iodide) using a Confotec NR500 system
A pinhole blocks the scattered light which is coming from the out-of-focus points.

Confocal apertures define the volume from which signal is collected.

Confocal Micro-Raman:
- Use of pinhole aperture to decrease off-focal rays
- Much smaller background
- 3D information
- Slightly higher lateral resolution

www.solinstruments.com
Comparison of Lateral Resolution Properties

| λ = 488nm | NA = 0.95 |

Lateral resolution is 1.39 times better

Intensity Distributions in the focal point

Airy disc radial intensity distribution

Axial intensity distribution
Lateral (XY) spatial resolution

\(\lambda = 488 \text{ nm}, \ NA = 0.95 \)

- Rayleigh criterion (313 nm)
 \[R_{\text{Lateral}} = \frac{0.61 \lambda}{NA} \]

- Sparrow criterion (241 nm)
 \[R_{\text{Lateral}} = \frac{0.47 \lambda}{NA} \]

- Abbe criterion (257 nm)
 \[R_{\text{Lateral}} = \frac{0.50 \lambda}{NA} \]

- Unresolved
The line spread function (LSF) is the derivative of the edge response. The width of the LSF is usually expressed as the Full-Width-at-Half-Maximum (FWHM). The width of the edge response is usually quoted by the 10% to 90% distance.

Experimental estimation of spatial resolution

Lateral resolution estimation (XY resolution):

Axial resolution estimation (Z resolution): Defocus Response
Si edge response function

Position along X-axis scanning, nm
Point Spread Function: Experimental measurement

UV laser reflection, NA=0.95

www.solinstruments.com
Lateral spatial resolution

![Graph showing the relationship between XY resolution and Wavelength for different NA values.](image-url)
3D Raman imaging capability

Intensity distribution (Si peak) Si peak position

Scan area: 50 x 50 x 7 um
Spatial resolution enhancement techniques in microscopy

Several approaches and methods for further spatial resolution improvement below the diffraction limit:

Nanojet (Near-field Raman imaging using an optically trapped dielectric microsphere)

Special illumination / detection (structured laser beam illumination)

Tip Enhanced Raman scattering

www.solinstruments.com
New technique: Photonic nanojet enhancement

- Spatial Resolution can be achieved below the diffraction limit
- Raman signal may be enhanced by small particle
Photonic nanojet: Finite-difference time-domain (FTDT) simulation

Photonics nanojets produced by polystyrene microspheres (n1=1.59, n2=1, λ=400nm):

Microsphere super-resolution focusing (nanojet) key properties

1. The transverse beam diameter of the nanojet can reach $\lambda/2n$, where λ is light wavelength and n is the refractive index of particle. In case of a polystyrene particle with $n=1.6$, the resolution limit is about 0.313λ.

2. Nanojet can appear for a certain range of the diameter of the dielectric microsphere from 2λ to more than 40λ.

Nanoscience, 2016, 3, 193-210
Nanojets can enhance the backscattering of visible light by several orders of magnitude.

www.solinstruments.com
Near-field Raman Imaging with Confotec Using Optically Trapped Dielectric Microsphere

The spot size of the beam (the full width at half maximum) was calculated to be 78 nm.

www.solinstruments.com
Near-field Raman Imaging with Confotec Using Optically Trapped Dielectric Microsphere
Illumination/Detection channel Tuning for Spatial Resolution Improvement

Optical system response function (PSF)

The lateral resolution with ring-shaped light illumination is 1.18 times better than with circular illumination.
Lateral resolution (XY) is 1.17 times better.
Axial resolution (Z) is 1.15 times better.
Structured light Illumination
TERS (Near-field imaging) system
(a) TERS (nano-Raman) map of individual single-walled nanotube bundle. Lateral resolution is <50 nm.

(b) Raman spectra from the bundle with (red) and without (black) enhancing TERS probe. (c) TERS enhancement factor vs. Tip-sample distance for vertically oscillating AFM cantilever and horizontally oscillating Au wire. S. Kharinstev, G.G. Hoffmann, P.S.Dorozhkin, G.de With and J.Loos
Nanotechnology 18 (2007), 315502
Thank you very much for your attention!

www.solinstruments.com